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Abstract

In the context of quantifying listening effort, traditional
hearing tests do not provide any information about the
stress experienced during listening tasks. Although there
have been attempts to quantify memory allocation during
acoustics tests, there is no agreement in the literature re-
garding the role of physiological indices in characterizing
different listening effort levels. To this extent, the aim of
our study is to ascertain if cardiovascular measurements
continuously recorded during the task can help in quanti-
fying listening effort. In the presented protocol, 21 normal
young hearing subjects performed a validated speech-in-
noise test at two fixed effort levels, while electrocardio-
gram (ECG) and blood volume pulse (BVP) were contin-
uously recorded. From these time series, the RR series,
the amplitude difference between each systole and dias-
tole and the pulse arrival time were extracted. In addition,
the ECG-derived RR series were modelled trough a point
process framework, yielding instantaneous cardiovascular
and autonomic indexes to be considered in our statistical
analysis. Overall, the average modelled RR intervals and
the pulse arrival time were found effective in distinguish-
ing the two different effort levels (p=0.031 and p=0.016).
In addition, the amplitude difference between each systole
and diastole was able to significantly separate high effort
from both low effort and the initial resting period (p<e-3).

1. Introduction

Listening effort is defined as ‘a specific form of men-
tal effort that occurs when a task involves listening’ [1].
Quantifying this kind of effort would be very important
to understand the listeners’ challenges that are usually not
identified by traditional audiometric measures [2]. Usually
to measure the listening effort, the amount of capacity allo-
cated to perform acoustic tests is estimated by the number
of items (words/sentences) recalled. Very few study inves-
tigated listening effort by means of physiological signals

and moreover there is no a complete agreement in the lit-
erature about how our body reacts according to increased
task demand in listening. The most accredited physiolog-
ical measure in this field is given by the changes in the
pupillary diameter [3]. Neuroimaging evidences, also, re-
vealed an increased activity in the cingulo-opercular net-
work for degraded vocal stimuli [4] and other brain regions
were found to be more active during degraded speech with
respect to normal one [5]. The major lack of findings is
related to autonomic nervous system (ANS) indexes which
are also less burdensome to compute with respect to central
measures. Indeed, few study are present and of those, re-
sults are promising but still not conclusive. In [6] increased
skin conductance amplitude and decreased high frequency
power extracted from the R-R spectrum from the electro-
cardiogram (ECG) signal were found significantly differ-
ent in both fast and normal speech but only with respect to
baseline. In [7], instead, they found differences in the elec-
trodermal response between two different degraded speech
(two-talker babble vs. speech-shaped noise) and the pulse
amplitude of the photoplethysmographic signal appeared
to increase (but not significantly) when masked speech was
proposed with respect to unmasked one. For audiologists,
an objective index of listening effort (as a physiological
one) could complement current clinical assessment tools
to inform counselling sessions, provide information on in-
tervention strategies and shed light on cases where there is
uncertainty about the need for intervention [1]. The aim
of the study is the investigation of cardiovascular features
linked to ANS which can reveal physiological behaviors
according to two different listening difficulty levels (low
and high). In the present study, indeed, we used a vali-
dated adaptive speech-in-noise test while monitoring ECG
and blood volume pulse (BVP) signals on 21 normal hear-
ing subjects. In particular we applied the point process
framework to analyze the ECG signal. The advantage of
using the point process is the possibility to compute heart
rate variability (HRV) features in short time windows. For
the computation of HRV features with traditional methods,
indeed, at least 5-minutes recording are recommended [8]
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in order to have reliable measures. By using the point pro-
cess, instead, short-term changes in HRV can be monitored
using short recording windows, thus limiting test duration
and the associated fatigue.

2. Methods

2.1. Study Design and Data

In this study, we used a recently developed, adaptive
speech-in-noise test which was validated on both normal
hearing and hearing impaired subjects [9]. The speech
stimuli used are Vowel-Consonant-Vowels (VCVs) which
are degraded by a gaussian white noise superimposed.
Starting from the first speech stimulus at +8 dB SNR, in
each trial the subject has to choose among three possible
VCVs. During the test the SNR of each VCV increases or
decreases according to incorrect or correct responses, re-
spectively. Test difficulty and duration depends this way on
the ability of the subject in discriminating speech stimuli
in noise. The full test and procedure is explained in [10].
Usually in speech-in-noise tests the outcome is the speech
reception threshold (SRT) defined as the minimum SNR
at which an individual can recognize a certain percentage
of the speech material (i.e., 79.4% in the three-alternatives
design here used). In order to find two different grades of
difficulty we used the individual SRT to distinguish those
two levels. In particular, since the just noticeable differ-
ence in speech for changes in SNR and for changes in in-
telligibility is around +3 dB SNR [11], we defined low dif-
ficulty trials those at which the SNR was higher than the in-
dividual SRT+2 dB SNR and high difficulty trials when the
SNR was lower or equal to the individual SRT+2 dB SNR.
In particular, for each subject we analyzed same length
segments related to consecutive trials at two fixed levels,
i.e. low (L) and high (H) difficulty. Our experimental pro-
tocol includes 13 females and 8 males (age: 26.18 ± 1.47
years). Before performing the test, all participants under-
went pure-tone audiometry on both ears to ensure that their
hearing thresholds were in the normal hearing range (pure
tone average thresholds among 500, 1000, 2000 and 4000
Hz < 20 dB HL ). Moreover, in order to minimize behav-
ioral heterogeneity, participants were asked to avoid coffee
and smoke for two hours prior to the experiment. Just be-
fore the start of the speech-in-noise test, 2-min of baseline
was recorded while subjects were looking at a grey screen.
Each feature in the effort phases was then compared with
the same feature computed on the same amount of time
during the baseline (B). This protocol has been approved
by the Ethical Committee of Politecnico di Milano.

2.2. Data and Feature Extraction

ECG and BVP signals were acquired by Procomp Infin-
ity (sampling frequency = 2048 Hz) and they were then fil-
tered by a 4th order zero-phase low-pass Butterworth anti-
aliasing filter with a cut-off frequency at 125 Hz and 25
Hz, respectively. Subsequently, both signals were down-
sampled at 250 Hz. R-peak locations were extracted on
the ECG signal by means of a Pan-Tompkins based algo-
rithm and the location and related amplitude values of sys-
tolic, diastolic and onset events from the BVP signal were
extracted and synchronized with the R-peaks. In more
details, systolic and diastolic values were found as max-
ima and minima between two subsequent R-peaks while
onsets were found by looking at the inflection points be-
tween each diastolic and the following systolic value. All
fiducial points extracted on ECG and BVP signals were
then manually checked to be sure of the right locations.
The RR series computed from the ECG signal was mod-
elled within a point process framework, which is fully ex-
plained in the next section, because of its ability in dealing
with non-stationary signals and at the same time tracking
fast changes induced by external stimuli [12]. From the
resulting time-varying estimation we were able to extract
the modelled RR series (µRR), its variability (σ2

RR), the
power spectral density of RR in very low (RR VLF), low
(RR LF) and high (RR HF) frequencies, LF/HF, the nor-
malized power spectral density of RR in low (RR LFn) and
high (RR HFn) frequency ranges and the total power spec-
tral density of RR (RR TOT). Systolic and diastolic values
of the BVP signal were used to compute the blood volume
amplitude (VA) as the average difference between each sys-
tole and diastole. Onset locations on the BVP signal were
used to compute the pulse arrival time (PAT) as the average
time interval between each pulse onset and the correspond-
ing R-peak.

Figure 1 shows an example of the RR series and µRR of
one subject during the test.

2.3. Point Process

A point process is a stochastic model underlying the oc-
currence of events in time or space. The intrinsic point pro-
cess nature of the RR interval which relies on the R-wave
events (Rk) in the ECG signal makes this model a well-
suited framework for modeling the heartbeat. Specifically,
we modelled the inter-beat-interval series according to the
following history-dependent inverse gaussian distribution:

p(t) =

(
θp+1

2π(t−Rk)3

) 1
2

exp

(
−θp+1(t−Rk − µRR)

2µ2
RR(t−Rk)

)
(1)

whose expected value is estimated with an autoregres-
sive (AR) model according to the following formulation:
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Figure 1. An example of the measured physiological re-
sponse during the test is reported for one subject. RR se-
ries and µRR are reported in red and blue, respectively.
The dark staircase represents the dB SNR outgoing dur-
ing the test. The dark dotted line represents the threshold
(SRT+2dB SNR) of the subject.

µRR = θ0 +
∑p

i=1 θi(t)RRk−i, where RRk represents
the k-th RR interval closer to time t. AR parameters, θ0:p,
and the shape parameter θp+1 are continuously estimated
through local maximum likelihood estimation according to
[12]. Time-varying spectral indices are derived from the
estimated AR coefficients.

3. Results

Statistical tests were performed to compare each fea-
ture extracted from ECG and BVP signals among the two
stress levels (L and H) and the baseline (B). Specifically,
Friedman’s test was performed if at least one variable was
not normal and two-way ANOVA test was performed if
all variables were normal. In all comparisons Bonferroni
correction was applied. Table 1 reports the median value
and the median absolute deviation of all the features com-
puted for all three levels. From the statistical analysis we
found out that µRR is significantly different between L and
H (p=0.031) with an observed decrease from L to H. This
feature in B instead is not statistically different from L and
H, even if an increase is present with respect to H. Look-
ing at the frequency features, RR VLF is significantly lower
in H with respect to B (p=0.026) and the decreasing trend
is however maintained also with respect to L. The same
happens for RR TOT (p=0.016). Although no significance
is present for RR LF, RR HF, RR LFn, RR HFn and RR
LF/HF, everything seems consistent with a greater sym-
pathetic activation in the high effort phase. In particular,
RR LFn and RR LF/HF show increasing trends from B and
L with respect to H and consistently, RR HF and RR HFn
show opposite trends. Only RR LF does not perfectly agree
since the highest value is in B, but it is higher in H with re-

Table 1. Median and median absolute deviation for each
feature computed in each level. Significant values are
marked with * including Bonferroni correction.

Baseline LOW HIGH
muRR [ms] 846(94) 836(88)* 818(85)*
σ2
RR [ms2] 879(785) 802(632) 624(611)

VLF [ms2] 1100(2800)* 1400(1100) 700(736)*
LF [ms2] 903(1400) 619(972) 786(780)
HF [ms2] 415(602) 424(324) 311(369)
LF/HF 2.45(3.30) 1.71(1.62) 2.67(2.06)

LFn 0.64(0.17) 0.56(0.14) 0.73(0.15)
HFn 0.45(0.17) 0.39(0.23) 0.33(0.14)

TOT [ms2] 3400(3900)* 3500(1400) 2100(1500)*
VA [a.u.] 5.92(3.05)* 5.82(3.72)* 3.96(3.09)*
PAT [ms] 299(31) 302(37)* 291(44)*

spect to L. However, this is unconfirmed in RR LFn which
is more related to the sympathetic system, since it refers to
a proportion excluding RR HF, which conversely is related
more to the parasympathetic system [13]. The same can
be said for σ2

RR which represents the variability of µRR:
in the H phase a lower variability can be observed with
respect to both B and L.

PAT follows the same behavior of µRR: decreasing val-
ues in H with respect to B and L with significant differ-
ences between L and H (p=0.016).

VA has shown to be the most effective feature for dis-
criminating the three effort levels: a significant decrease,
indeed, can be observed in H with respect to each of the
other two conditions (p=4e-4 for L-H and p=6e-3 for B-
H).

4. Discussions

Starting from time domain features µRR, VA and PAT
have shown to be very effective in discriminating the high
stress level with respect to the low one. In particular, µRR

which represents the RR series showed an average lower
in the high stress level, so an acceleration of the heartbeat
was present in the most difficult phase of the test. This
is also reflected in PAT where there is an acceleration of
the pressure wave from the heart to the periphery. This
reflects the high-stress sympathetic activation that is also
clearly visible in the VA which was significantly different
as well as from the high stress phase even during baseline.

The amplitude modulation of the BVP signal represents
indeed the volume of blood on the periphery. A lower BVP
amplitude modulation value is therefore linked to a greater
peripheral blood pressure, which is associated with vaso-
constriction. Our results point at this index as a reliable
marker to significantly discriminate the high effort phase
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from the other two conditions. With regard to the fre-
quency domain features, significantly lower values were
found in RR VLF and RR TOT in the high stress phase.
The total potency is now accepted to be an indication of
a greater variability of the tachogram that reflects a preva-
lent parasympathetic activation. This is in agreement with
what was found in the time domain. RR VLF is still a
matter of debate and warrants further elucidation. Never-
theless, several studies have associated RR VLF power to
parasympathetic activity [14], thus in accordance with the
expected response to the elicited effort levels. These two
variables, however, were significantly different between
high stress and baseline, not emphasizing differences in the
two phases of the test. Of note, even if the other frequency
domain features were not significant, the trends were still
consistent. From table 1, indeed, we can see how RR LFn
and RR LF/HF, which are both proportional to the sym-
pathovagal balance, are higher during the noise-induced
degradation. RR HFn, on the other hand, showed lower
values in the high effort phase where the degradation in
speech stimuli increased.

5. Conclusion

In the present work we have analyzed the ECG and the
BVP signal to extract effort-sensitive features which could
help in understanding when subjects experience a greater
stress during hearing tests. In particular, we introduce a
point process model to characterize heart beat dynamics in
association with hearing effort tests. In particular, we com-
puted the average beat-to-beat interval modelled through
the point process framework, the volume amplitude of the
BVP signal and the pulse arrival time computed as time
difference between R-peaks and the corresponding onset
values on the BVP signal. These cardiovascular features
revealed highly important associations of the autonomic
state of each subject in the two defined effort states in 21
normal hearing subjects. In particular statistical analysis
showed that these indices are able to significantly discrim-
inate low from high stress conditions.

Further research is needed to investigate these indexes
also in hearing impaired subjects and during a wider range
of listening conditions.

References

[1] Pichora-Fuller MK, Kramer SE, Eckert MA, Edwards B,
Hornsby BW, Humes LE, Lemke U, Lunner T, Matthen M,
Mackersie CL, et al. Hearing impairment and cognitive en-
ergy: The framework for understanding effortful listening
(fuel). Ear and Hearing 2016;37:5S–27S.

[2] Peelle JE. Listening effort: How the cognitive conse-
quences of acoustic challenge are reflected in brain and be-
havior. Ear and Hearing 2018;39(2):204.

[3] Zekveld AA, Kramer SE. Cognitive processing load across
a wide range of listening conditions: Insights from pupil-
lometry. Psychophysiology 2014;51(3):277–284.

[4] Vaden KI, Kuchinsky SE, Cute SL, Ahlstrom JB, Dubno
JR, Eckert MA. The cingulo-opercular network provides
word-recognition benefit. Journal of Neuroscience 2013;
33(48):18979–18986.

[5] Peelle JE. Listening effort: How the cognitive conse-
quences of acoustic challenge are reflected in brain and be-
havior. Ear and Hearing 2018;39(2):204.

[6] Mackersie CL, Calderon-Moultrie N. Autonomic nervous
system reactivity during speech repetition tasks: Heart rate
variability and skin conductance. Ear and Hearing 2016;
37:118S–125S.

[7] Francis AL, MacPherson MK, Chandrasekaran B, Alvar
AM. Autonomic nervous system responses during percep-
tion of masked speech may reflect constructs other than sub-
jective listening effort. Frontiers in Psychology 2016;7:263.

[8] Bourdillon N, Schmitt L, Yazdani S, Vesin JM, Millet GP.
Minimal window duration for accurate hrv recording in ath-
letes. Frontiers in Neuroscience 2017;11:456.

[9] Paglialonga A, Polo EM, Zanet M, Rocco G, van Water-
schoot T, Barbieri R. An automated speech-in-noise test for
remote testing: Development and preliminary evaluation.
American Journal of Audiology 2020;29(3S):564–576.

[10] Zanet M, Polo EM, Lenatti M, van Waterschoot T, Mon-
gelli M, Barbieri R, Paglialonga A. Evaluation of a novel
speech-in-noise test for hearing screening: Classification
performance and transducers’ characteristics. IEEE Journal
of Biomedical and Health Informatics 2021;25(12):4300–
4307.

[11] McShefferty D, Whitmer WM, Akeroyd MA. The just-
noticeable difference in speech-to-noise ratio. Trends in
Hearing 2015;19:2331216515572316.

[12] Barbieri R, Matten EC, Alabi AA, Brown EN. A point-
process model of human heartbeat intervals: new defini-
tions of heart rate and heart rate variability. American Jour-
nal of Physiology Heart and Circulatory Physiology 2005;
288(1):H424–H435.

[13] Camm AJ, Malik M, Bigger JT, Breithardt G, Cerutti S, Co-
hen RJ, Coumel P, Fallen EL, Kennedy HL, Kleiger RE,
et al. Heart rate variability: standards of measurement,
physiological interpretation and clinical use. task force of
the european society of cardiology and the north american
society of pacing and electrophysiology 1996;.

[14] Taylor JA, Carr DL, Myers CW, Eckberg DL. Mech-
anisms underlying very-low-frequency rr-interval oscilla-
tions in humans. Circulation 1998;98(6):547–555.

Address for correspondence:

Edoardo Maria Polo
Via Ponzio 34/5, 20133 Milano, Italia
polo@diag.uniroma1.it

Page 4


